Efficient Posterior Sampling for Bayesian Poisson Regression

نویسندگان

چکیده

Poisson log-linear models are ubiquitous in many applications, and one of the most popular approaches for parametric count regression. In Bayesian context, however, there no sufficient specific computational tools efficient sampling from posterior distribution parameters, standard algorithms, such as random walk Metropolis-Hastings or Hamiltonian Monte Carlo typically used. Herein, we developed an algorithm importance sampler to simulate parameters under conditional Gaussian priors with superior performance respect state-of-the-art alternatives. The key both algorithms is introduction a proposal density based on approximation parameters. Specifically, our result leverages negative binomial likelihood successful P\'olya-gamma data augmentation scheme. Via simulation, obtained that time per independent sample proposed samplers competitive using sampling, showing all scenarios considered.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Slice Sampling for Bayesian Posterior Inference

In this paper, we advance the theory of large scale Bayesian posterior inference by introducing a new approximate slice sampler that uses only small mini-batches of data in every iteration. While this introduces a bias in the stationary distribution, the computational savings allow us to draw more samples in a given amount of time and reduce sampling variance. We empirically verify on three dif...

متن کامل

Approximate Slice Sampling for Bayesian Posterior Inference

In this paper, we advance the theory of large scale Bayesian posterior inference by introducing a new approximate slice sampler that uses only small mini-batches of data in every iteration. While this introduces a bias in the stationary distribution, the computational savings allow us to draw more samples in a given amount of time and reduce sampling variance. We empirically verify on three dif...

متن کامل

Bayesian posterior mean estimates for Poisson hidden Markov models

This paper focuses on the Bayesian posterior mean estimates (or Bayes’ estimate) of the parameter set of Poisson hidden Markov models in which the observation sequence is generated by a Poisson distribution whose parameter depends on the underlining discrete-time time-homogeneous Markov chain. Although the most commonly used procedures for obtaining parameter estimates for hidden Markov models ...

متن کامل

Efficient Generation of Poisson-Disk Sampling Patterns

Poisson Disk sampling patterns are of interest to the graphics community because their blue-noise properties are desirable in sampling patterns for rendering, illumination, and other computations. Until now, such patterns could only be generated by slow methods with poor convergence, or could only be approximated by jittering individual samples or tiling sets of samples. We present a simple and...

متن کامل

Distributed Bayesian Posterior Sampling via Moment Sharing

We propose a distributed Markov chain Monte Carlo (MCMC) inference algorithm for large scale Bayesian posterior simulation. We assume that the dataset is partitioned and stored across nodes of a cluster. Our procedure involves an independent MCMC posterior sampler at each node based on its local partition of the data. Moment statistics of the local posteriors are collected from each sampler and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2022

ISSN: ['1061-8600', '1537-2715']

DOI: https://doi.org/10.1080/10618600.2022.2123337